Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Ren Fail ; 46(1): 2338931, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38622929

RESUMO

BACKGROUND: IgA nephropathy (IgAN) is the most common primary glomerulonephritis worldwide. Proliferation-inducing ligand (APRIL) was identified as an important cause of glycosylation deficiency of IgA1 (Gd-IgA1), which can 'trigger' IgAN. Our previous study indicated that high migration group protein B2 (HMGB2) in peripheral blood mononuclear cells from patients with IgAN was associated with disease severity, but the underlying mechanism remains unclear. MATERIALS AND METHODS: The location of HMGB2 was identified by immunofluorescence. qRT-PCR and Western blotting were used to measure HMGB2, HMGA1, and APRIL expression. Gd-IgA1 levels were detected by enzyme-linked immunosorbent assay (ELISA). In addition, we used DNA pull-down, protein profiling, and transcription factor prediction software to identify proteins bound to the promoter region of the APRIL gene. RNA interference and coimmunoprecipitation (Co-IP) were used to verify the relationships among HMGB2, high mobility group AT-hook protein 1 (HMGA1), and APRIL. RESULTS: HMGB2 expression was greater in IgAN patients than in HCs and was positively associated with APRIL expression in B cells. DNA pull-down and protein profiling revealed that HMGB2 and HMGA1 bound to the promoter region of the APRIL gene. The expression levels of HMGA1, APRIL, and Gd-IgA1 were downregulated after HMGB2 knockdown. Co-IP indicated that HMGB2 binds to HMGA1. The Gd-IgA1 concentration in the supernatant was reduced after HMGA1 knockdown. HMGA1 binding sites were predicted in the promoter region of the APRIL gene. CONCLUSION: HMGB2 expression is greater in IgAN patients than in healthy controls; it promotes APRIL expression by interacting with HMGA1, thereby inducing Gd-IgA1 overexpression and leading to IgAN.


Assuntos
Glomerulonefrite por IGA , Humanos , DNA/metabolismo , Glicosilação , Proteína HMGA1a/metabolismo , Proteína HMGB2/genética , Proteína HMGB2/metabolismo , Imunoglobulina A , Leucócitos Mononucleares/metabolismo , Fatores de Transcrição/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral
2.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542079

RESUMO

Human high-mobility group-B (HMGB) proteins regulate gene expression in prostate cancer (PCa), a leading cause of oncological death in men. Their role in aggressive PCa cancers, which do not respond to hormonal treatment, was analyzed. The effects of HMGB1 and HMGB2 silencing upon the expression of genes previously related to PCa were studied in the PCa cell line PC-3 (selected as a small cell neuroendocrine carcinoma, SCNC, PCa model not responding to hormonal treatment). A total of 72% of genes analyzed, using pre-designed primer panels, were affected. HMGB1 behaved mostly as a repressor, but HMGB2 as an activator. Changes in SERPINE1, CDK1, ZWINT, and FN1 expression were validated using qRT-PCR after HMGB1 silencing or overexpression in PC-3 and LNCaP (selected as an adenocarcinoma model of PCa responding to hormonal treatment) cell lines. Similarly, the regulatory role of HMGB2 upon SERPINE1, ZWINT, FN1, IGFPB3, and TYMS expression was validated, finding differences between cell lines. The correlation between the expression of HMGB1, HMGB2, and their targets was analyzed in PCa patient samples and also in PCa subgroups, classified as neuroendocrine positive or negative, in public databases. These results allow a better understanding of the role of HMGB proteins in PCa and contribute to find specific biomarkers for aggressive PCa.


Assuntos
Adenocarcinoma , Proteína HMGB1 , Neoplasias da Próstata , Humanos , Masculino , Adenocarcinoma/patologia , Linhagem Celular , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Proteína HMGB2/genética , Proteína HMGB2/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Fatores de Transcrição
3.
J Histochem Cytochem ; 72(4): 245-264, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38544368

RESUMO

Liver regeneration is a well-orchestrated compensatory process that is regulated by multiple factors. We recently reported the importance of the chromatin protein, a high-mobility group box 2 (HMGB2) in mouse liver regeneration. However, the molecular mechanism remains unclear. In this study, we aimed to study how HMGB2 regulates hepatocyte proliferation during liver regeneration. Seventy-percent partial hepatectomy (PHx) was performed in wild-type (WT) and HMGB2-knockout (KO) mice, and the liver tissues were used for microarray, immunohistochemistry, quantitative polymerase chain reaction (qPCR), and Western blotting analyses. In the WT mice, HMGB2-positive hepatocytes colocalized with cell proliferation markers. In the HMGB2-KO mice, hepatocyte proliferation was significantly decreased. Oil Red O staining revealed the transient accumulation of lipid droplets at 12-24 hr after PHx in the WT mouse livers. In contrast, decreased amount of lipid droplets were found in HMGB2-KO mouse livers, and it was preserved until 36 hr. The microarray, immunohistochemistry, and qPCR results demonstrated that the expression of lipid metabolism-related genes was significantly decreased in the HMGB2-KO mouse livers. The in vitro experiments demonstrated that a decrease in the amount of lipid droplets correlated with decreased cell proliferation activity in HMGB2-knockdown cells. HMGB2 promotes de novo lipogenesis to accelerate hepatocyte proliferation during liver regeneration.


Assuntos
Proteína HMGB2 , Regeneração Hepática , Camundongos , Animais , Regeneração Hepática/genética , Proteína HMGB2/genética , Proteína HMGB2/metabolismo , Lipogênese , Fígado/metabolismo , Proliferação de Células , Hepatócitos , Camundongos Knockout , Fatores de Transcrição/metabolismo , Camundongos Endogâmicos C57BL
4.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 166994, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38141838

RESUMO

Radiation injury of blood vessels (RIBV) is a serious long-term complication of radiotherapy, characterized by the development of atherosclerosis. The involvement of vascular smooth muscle cells (VSMCs) senescence in the pathogenesis of radiation-induced atherosclerosis has been implicated, yet the precise mechanisms governing VSMCs senescence remain inadequately comprehended. In this study, the senescence of VSMCs was examined by employing SA-ß-gal staining and assessing the expression of p16 and p21, both in vivo and in vitro. Our findings revealed that ionizing radiation (IR) has the potential to augment cellular senescence. In addition, IR significantly activated the NF-κB pathway, as evidenced by increased p65 nuclear translocation, phospho-p65 expression, and enhanced binding ability of p65 (EMSA). Furthermore, a decrease in HMGB2 expression following exposure to IR was observed via Western blot analysis, while CTCF expression remained unchanged. Interestingly, the formation of CTCF spatial clustering was detected under super-resolution fluorescence microscopy. Concurrently, the ChIP technique identified the facilitation of the interaction between CTCF and p16 gene through IR. The inhibition of CTCF or the overexpression of HMGB2 through lentiviruses effectively eliminates the formation of CTCF clusters and the upregulation of p16 and p21 after IR. Inhibition of NF-κB activation induced by IR by PDTC (100 µM) led to a decrease in the staining of SA-ß-gal, a reduction in p16 expression, an increase in HMGB2 protein expression and a decrease in CTCF clusters formation. This study provided significant insights into the role and mechanism of IR in VSMCs senescence by regulating NF-κB/CTCF/p16 pathway.


Assuntos
Aterosclerose , NF-kappa B , Humanos , NF-kappa B/metabolismo , Músculo Liso Vascular/metabolismo , Proteína HMGB2/metabolismo , Proteína HMGB2/farmacologia , Senescência Celular , Radiação Ionizante , Aterosclerose/metabolismo
5.
Clin. transl. oncol. (Print) ; 25(11): 3152-3164, 11 nov. 2023. graf
Artigo em Inglês | IBECS | ID: ibc-226840

RESUMO

Objective Local recurrence, distant metastasis, and perineural invasion (PNI) viciously occur in salivary adenoid cystic carcinoma (SACC), resulting in a poor prognosis. This study aimed to explore the mechanism by which circular RNA RNF111 (circ-RNF111) regulates PNI in SACC by targeting the miR-361-5p/high mobility group box 2 (HMGB2) axis. Method Circ-RNF111 and HMGB2 were highly expressed in SACC specimens, while miR-361-5p was underexpressed. Functional experiments showed that ablating circ-RNF111 or promoting miR-361-5p hindered the biological functions and PNI of SACC-LM cells. Results HMGB2 overexpression induced the reversal of SACC-LM cell biological functions and PNI caused by circ-RNF111 knockout. Furthermore, reduction of circ-RNF111 suppressed PNI in a SACC xenograft model. Circ-RNF111 regulated HMGB2 expression through targeted modulation of miR-361-5p. Conclusion Taken together, circ-RNF111 stimulates PNI in SACC by miR-361-5p/HMGB2 axis and may serve as a potential therapeutic target for SACC (AU)


Assuntos
Humanos , Carcinoma Adenoide Cístico/genética , Carcinoma Adenoide Cístico/metabolismo , Proteína HMGB2/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias das Glândulas Salivares/genética , Neoplasias das Glândulas Salivares/metabolismo , Neoplasias das Glândulas Salivares/patologia , Carcinoma Adenoide Cístico/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Invasividade Neoplásica/genética , Proteínas Nucleares/metabolismo , /genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
6.
Cell Stem Cell ; 30(11): 1452-1471.e10, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37832549

RESUMO

Our understanding of the molecular basis for cellular senescence remains incomplete, limiting the development of strategies to ameliorate age-related pathologies by preventing stem cell senescence. Here, we performed a genome-wide CRISPR activation (CRISPRa) screening using a human mesenchymal precursor cell (hMPC) model of the progeroid syndrome. We evaluated targets whose activation antagonizes cellular senescence, among which SOX5 outperformed as a top hit. Through decoding the epigenomic landscapes remodeled by overexpressing SOX5, we uncovered its role in resetting the transcription network for geroprotective genes, including HMGB2. Mechanistically, SOX5 binding elevated the enhancer activity of HMGB2 with increased levels of H3K27ac and H3K4me1, raising HMGB2 expression so as to promote rejuvenation. Furthermore, gene therapy with lentiviruses carrying SOX5 or HMGB2 rejuvenated cartilage and alleviated osteoarthritis in aged mice. Our study generated a comprehensive list of rejuvenators, pinpointing SOX5 as a potent driver for rejuvenation both in vitro and in vivo.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Rejuvenescimento , Humanos , Camundongos , Animais , Proteína HMGB2/genética , Proteína HMGB2/metabolismo , Senescência Celular/genética , Fatores de Transcrição/genética , Fatores de Transcrição SOXD/genética , Fatores de Transcrição SOXD/metabolismo
7.
Redox Biol ; 65: 102838, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37573836

RESUMO

Identifying novel regulators of vascular smooth muscle cell function is necessary to further understand cardiovascular diseases. We previously identified cytoglobin, a hemoglobin homolog, with myogenic and cytoprotective roles in the vasculature. The specific mechanism of action of cytoglobin is unclear but does not seem to be related to oxygen transport or storage like hemoglobin. Herein, transcriptomic profiling of injured carotid arteries in cytoglobin global knockout mice revealed that cytoglobin deletion accelerated the loss of contractile genes and increased DNA damage. Overall, we show that cytoglobin is actively translocated into the nucleus of vascular smooth muscle cells through a redox signal driven by NOX4. We demonstrate that nuclear cytoglobin heterodimerizes with the non-histone chromatin structural protein HMGB2. Our results are consistent with a previously unknown function by which a non-erythrocytic hemoglobin inhibits DNA damage and regulates gene programs in the vasculature by modulating the genome-wide binding of HMGB2.


Assuntos
Globinas , Proteína HMGB2 , Animais , Camundongos , Citoglobina/genética , Dano ao DNA , Globinas/genética , Globinas/metabolismo , Proteína HMGB2/genética , Proteína HMGB2/metabolismo , Fatores de Transcrição/genética
8.
Biomed Pharmacother ; 165: 115118, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37437373

RESUMO

Cardiovascular disease (CVD) is the most fatal disease that causes sudden death, and inflammation contributes substantially to its occurrence and progression. The prevalence of CVD increases as the population ages, and the pathophysiology is complex. Anti-inflammatory and immunological modulation are the potential methods for CVD prevention and treatment. High-Mobility Group (HMG) chromosomal proteins are one of the most abundant nuclear nonhistone proteins which act as inflammatory mediators in DNA replication, transcription, and repair by producing cytokines and serving as damage-associated molecular patterns in inflammatory responses. The most common and well-studied HMG proteins are those with an HMGB domain, which participate in a variety of biological processes. HMGB1 and HMGB2 were the first members of the HMGB family to be identified and are present in all investigated eukaryotes. Our review is primarily concerned with the involvement of HMGB1 and HMGB2 in CVD. The purpose of this review is to provide a theoretical framework for diagnosing and treating CVD by discussing the structure and function of HMGB1 and HMGB2.


Assuntos
Doenças Cardiovasculares , Proteína HMGB1 , Humanos , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Proteína HMGB2/genética , Proteína HMGB2/metabolismo , Proteínas HMGB/química , Proteínas HMGB/metabolismo , Biomarcadores
9.
Life Sci ; 328: 121827, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37276910

RESUMO

AIMS: In this study, we aimed to investigate previously unrecognized lipid metabolic perturbations in tamoxifen-resistant breast cancer (BC) by conducting comprehensive metabolomics and transcriptomics analysis. We identified the role of 3-hydroxy-3-methylglutary-coenzyme-A-synthase 2 (HMGCS2), a key enzyme responsible for ketogenesis, in tamoxifen-resistant BC growth. MAIN METHODS: Comprehensive metabolomics (CE-TOFMS, LC-TOFMS) and transcriptiomics analysis were performed to characterize metabolic pathways in tamoxifen-resistant BC cells. The upregulation of HMGCS2 were verified thorugh immunohistochemistry (IHC) in clinical samples obtained from patients with recurrent BC. HMGCS2 inhibitor was discovered through surface plasmon resonance analysis, enzyme assay, and additional molecular docking studies. The effect of HMGCS2 suppression on tumor growth was studied thorugh BC xenograft model, and intratumoral lipid metabolites were analyzed via MALDI-TOFMS imaging. KEY FINDINGS: We revealed that the level of HMGCS2 was highly elevated in both tamoxifen-resistant T47D sublines (T47D/TR) and clinical refractory tumor specimens from patients with ER+ breast cancer, who had been treated with adjuvant tamoxifen. Suppression of HMGCS2 in T47D/TR resulted in the accumulation of mitochondrial reactive oxygen species (mtROS) and apoptotic cell death. Further, we identified alphitolic acid, a triterpenoid natural product, as a novel HMGCS2-specific inhibitor that elevated mtROS levels and drastically retarded the growth of T47D/TR in in vitro and in vivo experiments. SIGNIFICANCE: Enhanced ketogenesis with upregulation of HMGCS2 is a potential metabolic vulnerability of tamoxifen-resistant BC that offers a new therapeutic opportunity for treating patients with ER+ BC that are refractory to tamoxifen treatment.


Assuntos
Neoplasias da Mama , Tamoxifeno , Humanos , Feminino , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Neoplasias da Mama/patologia , Hidroximetilglutaril-CoA Sintase/metabolismo , Proteína HMGB2/metabolismo , Proteína HMGB2/farmacologia , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/tratamento farmacológico , Apoptose , Estresse Oxidativo , Lipídeos/farmacologia , Resistencia a Medicamentos Antineoplásicos
10.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37176041

RESUMO

High-Mobility Group (HMG) chromosomal proteins are the most numerous nuclear non-histone proteins. HMGB domain proteins are the most abundant and well-studied HMG proteins. They are involved in variety of biological processes. HMGB1 and HMGB2 were the first members of HMGB-family to be discovered and are found in all studied eukaryotes. Despite the high degree of homology, HMGB1 and HMGB2 proteins differ from each other both in structure and functions. In contrast to HMGB2, there is a large pool of works devoted to the HMGB1 protein whose structure-function properties have been described in detail in our previous review in 2020. In this review, we attempted to bring together diverse data about the structure and functions of the HMGB2 protein. The review also describes post-translational modifications of the HMGB2 protein and its role in the development of a number of diseases. Particular attention is paid to its interaction with various targets, including DNA and protein partners. The influence of the level of HMGB2 expression on various processes associated with cell differentiation and aging and its ability to mediate the differentiation of embryonic and adult stem cells are also discussed.


Assuntos
Proteína HMGB1 , Proteína HMGB2 , Proteína HMGB2/genética , Proteína HMGB2/metabolismo , Proteína HMGB1/metabolismo , Proteínas HMGB/metabolismo , Fatores de Transcrição , DNA/metabolismo , Proteínas Nucleares , Proteínas de Grupo de Alta Mobilidade
11.
Clin Transl Oncol ; 25(11): 3152-3164, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37222950

RESUMO

OBJECTIVE: Local recurrence, distant metastasis, and perineural invasion (PNI) viciously occur in salivary adenoid cystic carcinoma (SACC), resulting in a poor prognosis. This study aimed to explore the mechanism by which circular RNA RNF111 (circ-RNF111) regulates PNI in SACC by targeting the miR-361-5p/high mobility group box 2 (HMGB2) axis. METHOD: Circ-RNF111 and HMGB2 were highly expressed in SACC specimens, while miR-361-5p was underexpressed. Functional experiments showed that ablating circ-RNF111 or promoting miR-361-5p hindered the biological functions and PNI of SACC-LM cells. RESULTS: HMGB2 overexpression induced the reversal of SACC-LM cell biological functions and PNI caused by circ-RNF111 knockout. Furthermore, reduction of circ-RNF111 suppressed PNI in a SACC xenograft model. Circ-RNF111 regulated HMGB2 expression through targeted modulation of miR-361-5p. CONCLUSION: Taken together, circ-RNF111 stimulates PNI in SACC by miR-361-5p/HMGB2 axis and may serve as a potential therapeutic target for SACC.


Assuntos
Carcinoma Adenoide Cístico , MicroRNAs , Neoplasias das Glândulas Salivares , Humanos , Carcinoma Adenoide Cístico/genética , Carcinoma Adenoide Cístico/metabolismo , Carcinoma Adenoide Cístico/patologia , RNA Circular/genética , Proteína HMGB2/genética , Proteína HMGB2/metabolismo , Neoplasias das Glândulas Salivares/genética , Neoplasias das Glândulas Salivares/metabolismo , Neoplasias das Glândulas Salivares/patologia , Fatores de Transcrição/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Invasividade Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Proliferação de Células , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
12.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37108449

RESUMO

Transposons are parasitic genetic elements that frequently hijack vital cellular processes of their host. HMGXB4 is a known Wnt signaling-regulating HMG-box protein, previously identified as a host-encoded factor of Sleeping Beauty (SB) transposition. Here, we show that HMGXB4 is predominantly maternally expressed, and marks both germinal progenitor and somatic stem cells. SB piggybacks HMGXB4 to activate transposase expression and target transposition to germinal stem cells, thereby potentiating heritable transposon insertions. The HMGXB4 promoter is located within an active chromatin domain, offering multiple looping possibilities with neighboring genomic regions. HMGXB4 is activated by ERK2/MAPK1, ELK1 transcription factors, coordinating pluripotency and self-renewal pathways, but suppressed by the KRAB-ZNF/TRIM28 epigenetic repression machinery, also known to regulate transposable elements. At the post-translational level, SUMOylation regulates HMGXB4, which modulates binding affinity to its protein interaction partners and controls its transcriptional activator function via nucleolar compartmentalization. When expressed, HMGXB4 can participate in nuclear-remodeling protein complexes and transactivate target gene expression in vertebrates. Our study highlights HMGXB4 as an evolutionarily conserved host-encoded factor that assists Tc1/Mariner transposons to target the germline, which was necessary for their fixation and may explain their abundance in vertebrate genomes.


Assuntos
Cromossomos , Elementos de DNA Transponíveis , Animais , Elementos de DNA Transponíveis/genética , Células-Tronco , Proteína HMGB2/metabolismo
13.
Int Immunopharmacol ; 119: 110198, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37087872

RESUMO

The contractile-syntheticphenotypicconversion of vascular smooth muscle cells (VSMCs) plays a key role in atherosclerosis, vascular restenosis, and hypertension. Our previous study explored the correlation between high mobility group box protein (HMGB) 1 and HMGB2 and neointimal hyperplasia after vascular injury. In the present study, we explore whether inflachromene (ICM), a novel inhibitor of the expression of both HMGB1 and HMGB2, modulates phenotypic changes in VSMCs and the mechanisms involved. Mice treated with ICM after carotid artery wire injury showed a decrease in excessive neointimal hyperplasia compared with that in the vehicle groups. In cultured VSMCs, pretreatment with ICM suppressed the angiotensin II (Ang II)-induced phenotypic conversion, proliferation, and migration. We discovered that ICM reduced the Ang II-induced upregulation of the expression of HMGB1 and HMGB2 and inhibited their shuttling between the nucleus and the cytosol. Mechanistically, Ang II-treated VSMCs exhibited higher levels of Toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) phosphorylation, which were attenuated by ICM. In addition, the NF-κB inhibitor Bay-117082 abolished the recombinant HMGB1-mediated VSMC phenotypic conversion, proliferation, and migration. Furthermore, ICM ameliorated the Ang II-induced increases in NAD[P]H oxidase expression, thereby attenuating the Ang II-induced proliferation and migration. These results reveal that ICM pretreatment attenuates Ang II-induced VSMC dedifferentiation, proliferation, and migration may by regulating the TLR4-NF-kB pathway. Thus, ICM is a potential therapy and preventive treatment for vascular proliferative diseases.


Assuntos
Proteína HMGB1 , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Hiperplasia/metabolismo , Receptor 4 Toll-Like/metabolismo , Proliferação de Células , Proteína HMGB1/metabolismo , Proteína HMGB2/metabolismo , Angiotensina II/metabolismo , Células Cultivadas , Miócitos de Músculo Liso/metabolismo
14.
J Biochem Mol Toxicol ; 37(5): e23306, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36935520

RESUMO

Osteoarthritis (OA) is the most common age-related joint disease characterized by chronic inflammation, progressive articular cartilage destruction, and subchondral sclerosis. Accumulating evidence suggests that circular RNAs (circRNAs) play key roles in OA, but the function of circSLTM in OA remains greatly unknown. Therefore, this study focused on interleukin-1ß (IL-1ß)-treated primary human chondrocytes as well as a rat model to investigate the expression pattern and functional role of circSLTM in OA in vitro and in vivo. CircSLTM and high mobility group protein B2 (HMGB2) were upregulated in IL-1ß-induced chondrocytes, whereas miR-421 was downregulated. Knockdown of circSLTM or overexpression of miR-421 ameliorated IL-1ß-induced chondrocyte apoptosis and inflammation. The regulatory relationship between circSLTM and miR-421, as well as that between miR-421 and HMGB2, was predicted by bioinformatics and then verified by the RNA immunoprecipitation experiment and dual-luciferase reporter gene assay. Furthermore, silencing of circSLTM increased cartilage destruction and decreased cartilage tissue apoptosis rate and inflammation in a rat model of OA. Taken together, our findings demonstrate the fundamental role of circSLTM in OA progression and provide a potential molecular target for OA therapy.


Assuntos
MicroRNAs , Osteoartrite , Humanos , Ratos , Animais , Condrócitos/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Proteína HMGB2/genética , Proteína HMGB2/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Inflamação/metabolismo , Osteoartrite/metabolismo , Fatores de Transcrição/metabolismo , Interleucina-1beta/metabolismo , Apoptose
15.
Cardiology ; 148(3): 271-277, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36958298

RESUMO

INTRODUCTION: The aim of this study was to investigate the relationship between the high mobility group box-2 (HMGB2) and valve calcification in senile degenerative heart valve disease (SDHVD). METHODS: According to the echocardiographic results, patients with calcified heart valves were used as the experimental group and patients without calcified heart valves were used as the control group; blood was drawn for testing, and serum levels of HMGB2 were measured by an enzyme-linked immunosorbent assay. Human heart valve interstitial cells (hVICs) cultured in vitro were randomly divided into two groups. The calcification group was cultured with a medium containing calcification induction solution and cells were induced on days 1, 3, and 5, and the control group was cultured with a standard medium. Expression of bone morphogenetic protein 4 (BMP-4) and HMGB2 in both groups was detected by Western blot. RT-PCR was performed to detect the expression of the HMGB2 gene during calcification. The hVICs were cultured in vitro for 4 days with different concentrations of exogenous HMGB2 (0.01 µg/mL, 0.1 µg/mL, 1 µg/mL, 2 µg/mL), while the control group was cultured with a standard medium and the expression of BMP-4 and NF-κB P65 was detected by Western blot. RESULTS: The serum level of HMGB2 was 7.90 (5.92, 12.39) µg/L, higher than that of 7.06 (5.06, 9.73) µg/L in the valve calcification group in elderly patients with degenerative valve disease (p = 0.005); the differences were statistically significant. In in vitro experiments, the cellular calcification protein BMP-4 and the HMGB2 protein were higher in the calcification group compared to the control group (p < 0.05). Exogenous stimulation of hVICs with HMGB2 was able to upregulate the expression of BMP-4 and NF-κB P65 (p < 0.05). CONCLUSIONS: HMGB2 is correlated with valvular calcification in senile degenerative heart valve disease. The HMGB2 protein may promote the process of SDHVD valve calcification by activating the NF-κB pathway and upregulating the expression of BMP-4.


Assuntos
Estenose da Valva Aórtica , Calcinose , Doenças das Valvas Cardíacas , Humanos , Idoso , Valva Aórtica/metabolismo , NF-kappa B/metabolismo , Proteína HMGB2/metabolismo , Doenças das Valvas Cardíacas/metabolismo , Células Cultivadas
16.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36834988

RESUMO

Non-histone nuclear proteins HMGB1 and HMGB2 (High Mobility Group) are involved in many biological processes, such as replication, transcription, and repair. The HMGB1 and HMGB2 proteins consist of a short N-terminal region, two DNA-binding domains, A and B, and a C-terminal sequence of glutamic and aspartic acids. In this work, the structural organization of calf thymus HMGB1 and HMGB2 proteins and their complexes with DNA were studied using UV circular dichroism (CD) spectroscopy. Post-translational modifications (PTM) of HMGB1 and HMGB2 proteins were determined with MALDI mass spectrometry. We have shown that despite the similar primary structures of the HMGB1 and HMGB2 proteins, their post-translational modifications (PTMs) demonstrate quite different patterns. The HMGB1 PTMs are located predominantly in the DNA-binding A-domain and linker region connecting the A and B domains. On the contrary, HMGB2 PTMs are found mostly in the B-domain and within the linker region. It was also shown that, despite the high degree of homology between HMGB1 and HMGB2, the secondary structure of these proteins is also slightly different. We believe that the revealed structural properties might determine the difference in the functioning of the HMGB1 and HMGB2 as well as their protein partners.


Assuntos
Proteína HMGB1 , Proteína HMGB2 , DNA/química , DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade , Proteína HMGB1/química , Proteína HMGB1/metabolismo , Proteína HMGB2/química , Proteína HMGB2/metabolismo , Fatores de Transcrição , Ligação Proteica , Animais , Bovinos
17.
Chem Biol Drug Des ; 101(4): 952-961, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36601671

RESUMO

Acute myocardial infarction (AMI) is a common cardiovascular disease and puerarin (Pue) is an active compound from Pueraria lobate with cardio-protective potential. In the current study, the mechanism underlying the cardio-protective effects of Pue was explored by focusing miR-130a-5p/HMGB2 pathway. MiR expression profile was determined and myocardial infarction was induced in cardiomyocytes and rats, which was treated with Pue. The role of miR-130a-5p and downstream HMGB2/NF-κB axis in the cardio-protective effects of Pue was also explored. Pue increased viability and suppressed inflammation in OGD cardiomyocytes, which was associated with the deactivation of HMGB2/NF-κB pathway. After the suppression of miR-130a-5p, the cardio-protective effects of Pue were compromised. In rat models, Pue attenuated structure deterioration and inflammatory response in heart. At the molecular level, miR-130a-5p was up-regulated, and HMGB2 were down-regulated. It was demonstrated that Pue induced the expression of miR-130a-5p, which suppressed the activity of HMGB2/NF-κB, contributing to the attenuation of infarct heart tissues.


Assuntos
MicroRNAs , Infarto do Miocárdio , Pueraria , Ratos , Animais , NF-kappa B/metabolismo , MicroRNAs/metabolismo , Proteína HMGB2/metabolismo , Proteína HMGB2/farmacologia , Pueraria/metabolismo , Isquemia , Inflamação , Apoptose
18.
Exp Anim ; 72(2): 199-208, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-36503880

RESUMO

Spinal cord injury (SCI), characterized by sensory disturbance and motor deficits, is associated with excessive inflammatory cytokine production of microglial cells. Previous studies have demonstrated High mobility group box 2 (HMGB2) as a microglial pro-inflammatory factor in stroke. This present study aims to evaluate the function of HMGB2 in a SCI rat model induced by striking the spinal cord at T9 to T12 using a rod. Our results showed that the levels of HMGB2 were significantly increased in the spinal cord tissues of SCI rats. Besides, HMGB2 downregulation was achieved by receiving an injection of lentivirus encoding HMGB2 shRNA in the spinal cord. Knockdown of HMGB2 suppressed SCI-induced microglial activation and neuroinflammation, as well as alleviated neuronal loss. In addition, we confirmed that HMGB2 silencing lessened lipopolysaccharide (LPS)-induced neuroinflammation in BV-2 cells. Furthermore, our findings demonstrated that HMGB2 knockdown suppressed the canonical nuclear factor of kB (NF-κB) signaling pathway both in vivo and in vitro. Collectively, this study manifested strong anti-inflammatory roles of HMGB2 knockdown on microglia-mediated neuroinflammation and suggested that HMGB2 might serve as a potential target for SCI therapy.


Assuntos
Microglia , Traumatismos da Medula Espinal , Ratos , Animais , Regulação para Baixo , Doenças Neuroinflamatórias , Proteína HMGB2/genética , Proteína HMGB2/metabolismo , Inflamação/complicações , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/terapia , Medula Espinal/metabolismo
19.
Gene ; 850: 146932, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36191827

RESUMO

High mobility group box 1 (HMGB1) and high mobility group box 2 (HMGB2) were highly conserved nonhistone chromosomal proteins involved in DNA damage repair, innate immune and inflammatory response. In this study, Acipenser baerii HMGB1 (AbHMGB1) and HMGB 2 (AbHMGB2) were identified. The open reading frame (ORF) of AbHMGB1 was 621 bp which encoded 206 amino acids, and the ORF of AbHMGB2 was 630 bp encoded 209 amino acids. AbHMGB1 and AbHMGB2 were conserved compared with bony fish by phylogenetic analyzing. qRT-PCR showed that AbHMGB1 and AbHMGB2 were expressed in all examined tissues, AbHMGB1 was expressed abundantly in muscle, followed by head kidney and brain, and AbHMGB2 was highest expressed in gill, followed by brain and muscle. After Streptococcus iniae infection and PAMPs treatment, AbHMGB1 and AbHMGB2 were induced significantly. This study indicated that AbHMGB1 and AbHMGB2 are involved in the process of pathogenic infection and provided a basis for exploring the mechanism of Acipenser baerii enteritis induced by Streptococcus iniae.


Assuntos
Proteína HMGB1 , Infecções Estreptocócicas , Animais , Proteína HMGB2/genética , Proteína HMGB2/metabolismo , Filogenia , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Moléculas com Motivos Associados a Patógenos , Peixes/metabolismo , Aminoácidos/genética
20.
J Ovarian Res ; 15(1): 133, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539852

RESUMO

BACKGROUND: High-Mobility Group Box 1 (HMGB1) and HMGB2 are chromatin-associated proteins that belong to the HMG protein family, and are involved in the regulation of DNA transcription during cell differentiation, proliferation and regeneration in various tissues. However, the role of HMGB2 in ovarian folliculogenesis is largely unknown. METHODS: We investigated the functional role of HMGB1 and HMGB2 in ovarian folliculogenesis and fertilization using C57BL/6 wild type (WT) and HMGB2-knockout (KO) mice. Ovarian tissues were obtained from WT and HMGB2-KO mice at postnatal days 0, 3, 7, and 2, 6 months of age, then performed immunohistochemistry, qPCR and Western blotting analyses. Oocyte fertilization capability was examined by natural breeding and in vitro fertilization experiments. RESULTS: In HMGB2-KO mice, ovary weight was decreased due to reduced numbers of oocytes and follicles. Natural breeding and in vitro fertilization results indicated that HMGB2-KO mice are subfertile, but not sterile. Immunohistochemistry showed that oocytes expressed HMGB2, but not HMGB1, in neonatal and adult WT ovaries. Interestingly, in HMGB2-KO ovaries, a compensatory increase in HMGB1 was found in oocyte nuclei of neonatal and 2-month-old mice; however, this was lost at 6 months of age. CONCLUSIONS: The depletion of HMGB2 led to alterations in ovarian morphology and function, suggesting that HMGB2 plays an essential role in ovarian development, folliculogenesis and fertilization.


Assuntos
Proteína HMGB2 , Ovário , Feminino , Animais , Camundongos , Ovário/metabolismo , Proteína HMGB2/genética , Proteína HMGB2/metabolismo , Camundongos Endogâmicos C57BL , Oócitos/metabolismo , Fatores de Transcrição/metabolismo , Fertilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...